
The definitive guide to
secure coding principles

WHITEPAPER

Introducing security early
Security is an essential part of every software architecture - or at least it should
be. But more often than not, security is neglected at multiple levels of the
company hierarchy. Engineers may view it as a distraction from their actual work
of building products and fixing bugs; while managers see it as something that
costs money and slows everything else down without delivering direct value.

While security might not seem like a benefit in the short run, it can mitigate
significant risks for a company in the long run. For example, Facebook

experienced a data breach that exposed the private data of 30 million users.
Meanwhile, the decentralized finance app Poly - which runs on the Ethereum

blockchain - lost roughly $600 million to a smart contract hack.

Often, failure to include security right from the start of a new application is a
problem with multiple causes. Most engineers want to build secure systems but
don’t have the required skills. And while product managers aren’t particularly
fond of pouring time into non-feature-related tasks, they know what kind of
impact an insecure application can have on the company.

Then one day, things go wrong, and an application gets hacked. Now, managers
start hassling engineers with overburdening rules, which slow them down and
kill their motivation; and while leading to secure software, this can also lead to
a decline in overall software quality. After all, the level of security an application
provides isn’t the only measure potential customers go by when choosing what to
buy.

A good security strategy should include a set of rules that can be autonomously
followed and verified by engineers. The sooner in the development pipeline, the
better. Wherever possible, you should apply the “shift-left” principle to every rule,
so it can be verified early in the development process, when it’s still cheap to
make changes to the system.

SECURE CODING PRINCIPLES

In the first half of this white paper, we cover the OWASP list
of well-known security risks, so you know what to look out
for. The second half focuses on best practices that can be
included in your development pipeline.

https://www.itechpost.com/articles/106040/20210618/facebook-data-breach-2021-exposes-30-million-user-check-now.htm
https://www.forbes.com/sites/jonathanponciano/2021/08/10/more-than-600-million-stolen-in-ethereum-and-other-cryptocurrencies-marking-one-of-cryptos-biggest-hacks-ever

02

BROKEN ACCESS CONTROL

While your application has access control, it doesn’t always control access
sufficiently. Examples of this includes users seeing data they shouldn’t have
access to, or allowing users to act with admin or moderation roles they haven’t
been assigned to. Cloud providers offer access control services: AWS has IAM
and Azure Active Directory. But if these aren’t set up correctly, it can leave
your doors wide open for attacks.

Following the “principle of least privilege” and “deny by default” helps to
mitigate this risk. In addition, missing permission configuration should lock
down the system; this way, while you might forget to allow access, it’s
impossible for you to forget to restrict it.

CRYPTOGRAPHIC FAILURES

This occurs when you attempt to secure your access keys with
cryptographical methods but choose insufficient or outdated practices
and libraries to do so, like hard-coding passwords into the source of your
application or hashing passwords with MD5.

One solution is to classify your data and then choose appropriate methods
to store it. Cloud providers offer certain key stores for access keys. Encrypt
private data at rest and only store it if necessary. Also, try to keep your
crypto libraries up to date. The sooner you know that an algorithm has
been broken, the quicker you can replace a library that relies on it.

01

The OWASP Top 10
web application security risks
In order to understand the threat landscape, let’s start by looking at the OWASP Top
10 web application security risks. The list is updated annually by security experts
from across the globe. The risks are ranked by their frequency of occurrence in web
applications tested by OWASP auditors.

SECURE CODING PRINCIPLES

05

04 INSECURE DESIGN

Insecure design is a broad topic, as it includes risks created when designing
the architecture of an application. For example, standardized error messages
can lead to exposure of sensitive data. This also includes designing data
structures that contain information of different security levels.

The shift-left movement of security practices needs to reach into the system’s
design phase. Before actual code is written, the stakeholders have to think
about threat models and confidentiality.

INJECTION

When you fail to sanitize user input, users can add dubious data into your
system. This can include—but is not limited to—JavaScript on the client side
and SQL code, which your database will execute, which your backend will then
execute.

To ensure this doesn’t happen, you should never use your programming
language’s interpreter directly on user input. Keeping a layer of abstraction as
an ORM between your users and your database helps too.

CRYPTOGRAPHIC FAILURES

The people who deploy and maintain the software aren’t always the same
as those who implemented it. This can lead to installed plugins or open
ports that aren’t needed.

Automated hardening processes can help keep things in check even
if the person handling it can’t. Supplying your operations team with a
configuration that only enables the minimal features required to run the
application also clarifies optional parts. A simple example of this would be
the network port of a server; most of the time, you would use the default
ports, but sometimes you need to set a specific port. This could be the case
when you are running multiple instances of one server on one computer, or
if you need to adhere to security groups’ configurations.

Today, it is considered best practice to use cloud configuration scanners.
These are like linters for your config files which help you to avoid common
errors when setting up your infrastructure.

03

SECURE CODING PRINCIPLES

08

07 IDENTIFICATION AND AUTHENTICATION FAILURES

Missing multi-factor authentication or exposing session identifiers in URLs are
failures that make it easy for malicious actors to use automation tools to brute
force their way into your system.

Make sure you’re using up-to-date processes for authentication. Use multi-
factor authentication when possible and make sure your password recovery
doesn’t rely on knowledge-based answers. Generate random, unguessable
session IDs, and never store them in the URL.

VULNERABLE AND OUTDATED COMPONENTS

Today, building software is essentially bundling together several third-party
components to form a whole. This practice has become such a core task, it
often includes unmaintained packages that contain security vulnerabilities.
This includes all third-party software you use—your container or virtual
machine runtimes have to be updated too.

Make sure to keep track of your dependencies, so you only include what you
use. In addition, use an automated audit system that notifies you when one of
your dependencies becomes compromised.

SOFTWARE AND DATA INTEGRITY FAILURES

This issue relates to data integrity checks such as cryptographic signatures
and the widespread use of third-party libraries to build applications. You
need to download these dependencies from a package repository, but
these are compromised more and more often these days.

Always check the validity of the library signatures you use. If possible,
use a tool like OWASP Dependency-Check, so you can be sure you’re only
including safe dependencies.

06

SECURE CODING PRINCIPLES

10 SERVER-SIDE REQUEST FORGERY

In many applications, the backend doesn’t have all the necessary data within
easy reach; often, it has to request it from an upstream service in order to
complete the task at hand. If the request includes data from unsanitized
user input, an attacker could load sensitive data from unsuspecting internal
services.

As with injections, data coming from users should always be sanitized. If
requests are generated from user inputs, ensure that server-side requests are
filtered by an allowlist of secure hostnames and ports.

SECURITY LOGGING AND MONITORING FAILURES

Applications log their activity to make it easier for the operations team to
maintain them. But often, only the basics are logged, and information like
important transactions or failed logins are missing. Unclear error messages

are a problem too. Multicloud architectures only exacerbate the problem since
you have to consolidate all the logs somehow to avoid wasting time looking in
multiple places.

To avoid this, add security-related information to your logs, like sensitive data
access or logins. Use append-only data storage for your logs, so they can’t be
modified later.

09

SECURE CODING PRINCIPLES

https://vulcan.io/blog/multi-cloud-security-what-you-need-to-know/
https://vulcan.io/lp/vulcan-free/

STATIC ANALYSIS

What static analysis does before the code is built, dynamic analysis attempts to do after this
stage. Dynamic analysis allows you to check your application’s runtime behavior and thus to
catch different issues than static analysis is able to.

 v Code coverage checks which parts of your code were actually executed when the application
ran. This can be used in conjunction with tests to see if you really tested crucial parts of your
code.

 v Code instrumentation can give you more insights while your application runs in the cloud. It
makes your system more observable and allows you to see what resources are accessed while
your customers use it.

 v Runtime-call tree graphs are a way to see how your code behaves in terms of runtime
complexity. This allows you to eliminate call stack overflows coming from too deeply nested
recursions.

Dynamic analysis is an excellent addition to static analysis tools because they catch
different problems.

 v A code linter is the next step here. It checks if you use idiomatic ways of implementation and
often catches essential issues. The nice thing about a linter is that it also works on dynamically
typed languages, like JavaScript or Ruby, to improve code quality even if no static type check is
available.

 v Static typing and linters are more general tools, and while they can improve security, that isn’t
their primary focus. Vulnerability scanners, like Checkmarx, are all about security issues. They
check your code against giant databases of vulnerabilities and can find even the most obscure
problems.

Security best practices
The first step is static analysis. The goal here is to check your code for problems in an automated
fashion right when you write it.

Overall, these static analysis tools free engineers from having to keep everything in mind all the
time, and thus allow for greater focus on business-related tasks, without compromising security.
It’s a good idea to incorporate these scanners into your CI/CD pipeline so they’re executed on the
code even if an engineer forgot to do so on their local machine.

SECURE CODING PRINCIPLES

STATIC ANALYSIS

TESTING

Automated testing has become an industry standard. Executing your code and checking if
it runs before shipping it to your customers is crucial. There are many types of tests, each of
which with a different focus. Let’s look at the most prominent ones in the field of security:

 v Unit tests are automated tests that focus on a small unit of code. What that means has to be
decided on a case-to-case basis. You can use unit tests to check your sanitation procedures in
an encapsulated way to ensure they’re airtight.

 v Integration tests check the interaction of multiple units of the application, making them more
complex than unit tests. They can help to locate data leaking from one part of the application
to another.

 v End-to-end tests are the most complex tests; they try to mimic complete user interaction with
the application. After making sure your application is secure, these types of tests can be used
to check if it’s still usable. They also help to replicate problematic user interactions that reveal
security vulnerabilities.

 v Property tests, like unit tests, try to run a specific part of the application. They differ from unit
tests because they generate multiple unit inputs instead of just some predefined inputs. This
type of testing can uncover the sort of edge cases an attacker could use to hack your system.

 v Fuzzing is another type of testing. It’s a bit like a property test; the difference is that a
property test uses type annotations to generate inputs for a unit, while fuzzing brute forces
all inputs into an executable, even invalid ones. This testing method is used mainly to harden
binary executables.

 v Mutation tests for your tests. The rationale is that if you introduce a bug into your codebase,
your tests should fail. Mutation tests modify—or mutate—your code base with minor changes
and check if your tests fail. This helps to locate weakly tested code as an alternative to the
code coverage approach, which only checks for executed lines of code.

Software composition analysis (SCA), is an excellent addition to your security practices. Most of
our software today is built by integrating multiple third-party software libraries. This practice
saves time and money, but it also opens your software to the security vulnerabilities of these
third-party libraries.

SCA services scan the most popular such libraries for you, notifying of any issues. One of the
advantages of SCA is that it can be done independently of your software. The code of such
libraries lives in open source repositories that are publicly available for the SCA scanners. When
using such a service, you can read the results of the scans that have already happened in the past
for your immediate benefit.

SECURE CODING PRINCIPLES

SOFTWARE COMPOSITION ANALYSIS

REMEDIATION INTELLIGENCE

Finding holes in your defense is just the first step, but fixing security vulnerabilities isn’t always
straightforward. Often a naive fix, which doesn’t take root causes into account, can lead to other
issues in the future. Fixing security problems sometimes means writing code in a non-obvious
way, for example, when you have to override parts of the memory manually to make sure secrets
can’t be extracted from it after the program ends.

That’s where remediation intelligence comes into play. Using BI dashboards powered by advanced
analytics, it takes the problems discovered by the tools discussed and provides actionable insights to
guide your next steps.

Code reviews are a manual task executed by your team members. One engineer writes code, while
another reads it to check there aren’t any issues with it. This is often necessary because code can
impact other parts of the architecture implicitly. Having a security professional review critical code
paths is recommended to improve security.

However, people tend to switch to autopilot when they have to complete repeated manual tasks,
which undermines the whole premise of code reviews: finding issues automated tools can’t detect.

Checklists for code reviews can help here by ensuring that no vital step of the review is omitted.

SECURE CODING PRINCIPLES

CODE REVIEWS

https://github.com/mgreiler/secure-code-review-checklist
https://vulcan.io/lp/demo/

CONTACT US

Conclusion
Developing secure systems is crucial for your business, and it should be a top priority for every

R&D team. Ensuring security best practices is key, but this requires proper guidance. Failure to

inform your developers of what’s essential can lead to serious problems in the long run.

Not only do you have to make sure that your teams are notified when holes in your security are

found; you also have to supply them with the right information to identify and fix the problem.

Developers need to know what to look out for, how to look out for it, and how to remediate

vulnerabilities when they are found.

The Vulcan Cyber® risk management platform offers end-to-end cyber risk management—

finding, prioritizing, and fixing your vulnerabilities. It provides your engineers with actionable

remediation data right when they need it, covering all your attack surfaces—from networking

to cloud infrastructure and application code. It also integrates with your existing tools (Jira,

Slack, Microsoft Teams, ServiceNow, and more), making collaboration easier than ever.

Embrace the DevSecOps approach with your risk remediation to get the most from your tools

and your team. Request a demo to start owning your risk.

Own your risk.

About Vulcan Cyber
Vulcan Cyber® breaks down organizational cyber risk into measurable, manageable processes

to help security teams go beyond their scan data and actually reduce risk. With powerful

prioritization, orchestration and mitigation capabilities, the Vulcan Cyber risk management

SaaS platform provides clear solutions to help manage risk effectively. Vulcan enhances teams’

existing cyber environments by connecting with all the tools they already use, supporting every

stage of the cyber security lifecycle across cloud, IT and application attack surfaces. The unique

capability of the Vulcan Cyber platform has garnered Vulcan recognition as a 2019 Gartner Cool

Vendor and as a 2020 RSA Conference Innovation Sandbox finalist.

mailto:hello%40vulcan.io?subject=
https://vulcan.io/platform/
https://vulcan.io/cloud-security-programs/
https://l.vulcancyber.com/hubfs/Ebooks%20and%20White%20Papers/Solution%20briefs/Risk-Based_Application_Security_Remediation.pdf?_ga=2.193099176.483918579.1636445044-208331299.1631523577
https://vulcan.io/blog/heres-why-all-good-remediation-strategies-begin-with-collaboration/
https://vulcan.io/lp/demo/

